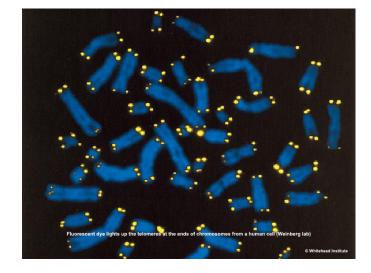


Boston MRC Introduction to Biological Hazards Response

Julien Farland MS, RBP
Director of Biological Safety
Boston Public Health Commission
March 25, 2015


Objectives

- Describe the types and classes of biological agents
- Discuss how biological agents can affect the human body

Microorganisms

- Microorganisms They're everywhere
- 10,000 10,000,000 bacteria on each hand
- 500-1000 species of bacteria in the gut
- 100 million 3 billion organisms in a gram of soil
- But there are only about 300 known microorganisms that

cause disease

.

Types of Microorganisms

- Bacteria
- Chlamydia and
- Rickettsia
- Mycoplasm
- Fungi molds and yeast
- Parasites
- Viruses
- Prions

Microorganisms vary in size:

http://learn.genetics.utah.edu/content/begin/cells/scale/

Visible with Electron Microscope		Visible with Microscope				Visible with Naked Eye	
.001 u	.01 u	.1 u	.5 u	1.0 u	5.0 u	10.0 u	100+ u



1 u = .03 inches 1u = 1 millionth of a meter

Spores (2 – 60)


- An agent of biological origin that has the capacity to produce harmful effects on humans
 - Micro-organisms, toxins and allergens derived from those organisms
 - An organism capable of causing disease is known as a pathogen
 - The ability of an organism to produce disease is called pathogenicity
 - Allergens and toxins derived from higher plants and animals

Where do pathogens come from?

Humans: infected individuals

Animals/animal products: meat, fish, milk

Inanimate objects

Routes of Entry

- To cause an infection, microbes must enter our bodies.
 - Inhalation
 - □ Ingestion
 - Injection
 - ☐ Absorption via a splash to mucosal tissue

How are Pathogens Transmitted?

- Direct Transmission
 - □ Transmission of airborne particles
 - □ Needle stick
 - □ Splash

- Object
- □ Food
- □ Insect bite (Vector)

Pathogenicity

- A pathogen is successful when it can invade and avoid detection
- Infection is the invasion by and multiplication of pathogenic microorganisms in a bodily part or tissue, which may produce tissue injury and progress to a disease through a variety of mechanisms

Influenza virus

Bloodborne Pathogens

- Bloodborne Pathogens are biohazardous microorganisms found in human blood, body fluids, organs, tissues, and cell lines. The most common are; HIV, Hepatitis B, Hepatitis C
- Universal Precautions Assume ALL human-source material is infected

Possible infectious agents in blood and body fluids

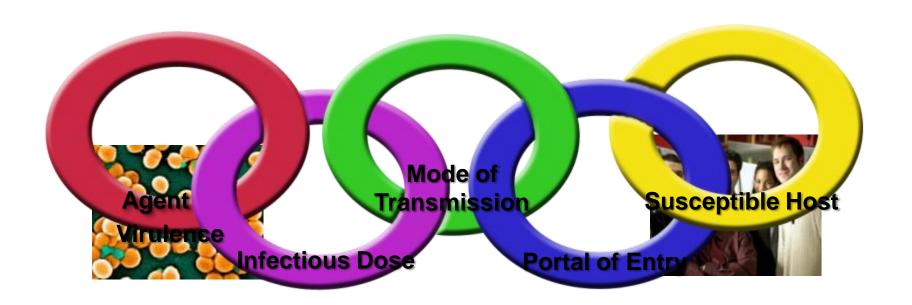
- HIV
- Hepatitis B and/or C Virus
- Malaria
- Chagas
- Toxoplasma gondii
- Cytomegalovirus
- Syphilis
- And more!


Bloodborne Pathogen - HCV

- Most common chronic bloodborne infection in the US
- Sexual transmission less important
- Seroconversion infected sharps ~1.8%
- Survive and transmit for 6 hours but not longer than 4 days

Liver

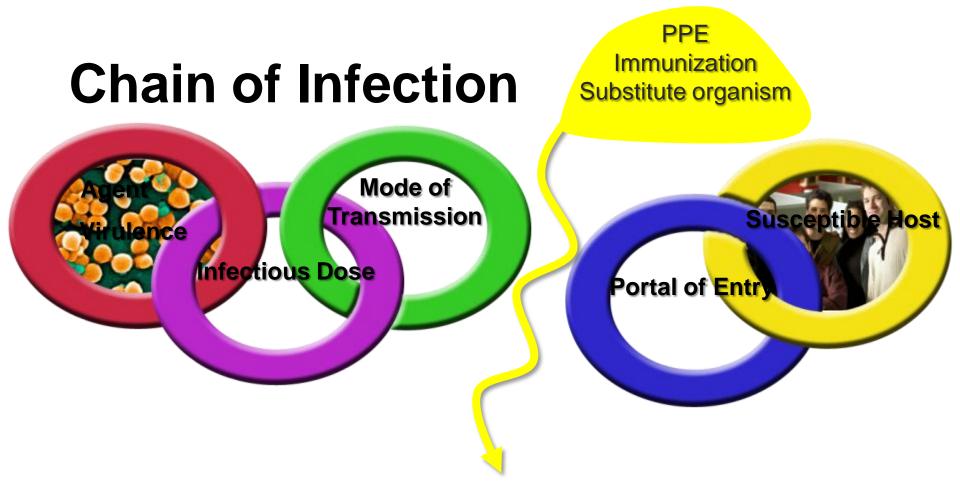
No vaccine


Estimated occupational HBV infections US health care workers '83-'99

Human Immunodeficiency Virus

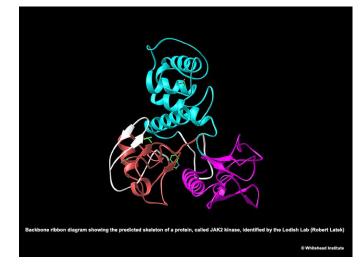
- 1.1 million people with HIV in the U.S. in 2006
- 56,000 new infections in 2006 in the U.S
- Body fluids with high concentrations of HIV
 - □ Blood, semen, vaginal fluid and breast milk
 - □ Low concentrations in saliva and tears
- Fragile, will not survive outside of host
 - □ "Drying" results in 90 90% reduction of virus in 3 hours
- Transmission
 - □ Needle stick/sharp from HIV contaminated needle
 - ☐ Mucous membrane exposure
 - □ Open cut/skin exposure

Chain of Infection



Defense Against Infection

- In addition to the agent, virulence, infectious dose, exposure, and susceptibility, the body has natural defenses to protect against invasion by a pathogen
 - Physical barriers
 - Non specific defenses
 - Immune system


Any break in the chain can prevent infection from occurring

 Poisonous by-products of microorganisms, plants or animals that produce adverse clinical effects in humans, plants or animals

Toxic effect of material is similar to chemical poisoning –

not infection

Ricin Toxin

- Ricin is produced in maturing seed from the castor bean
- Much less toxic than Botulinum toxin
- Ingestion is seldom fatal, but inhalation and intravenous exposure are more problematic
- No vaccine or antidote is currently available

Organism	Toxin		
Bacillus anthracis	anthrax		
Clostridium tetani	tetanus		
Corynebacterium diptheriae	diptheria		
Escherichia coli	enterotoxin (e.g., O157:H7)		
Shigella species	shigatoxin		
Vibrio cholerae	cholera		
Rosary pea plant	abrin		
Cone snail	conotoxin		
Marine dinoflagellates	saxitoxin		
Puffer fish	tetrodotoxin		
Aspergillis species	aflatoxin		

Risk Assessment

- Risk assessment is the process that enables the appropriate selection of the items below in order to prevent laboratoryassociated infections
- It is the Risk Assessment that allows for the development of PPE selection

Minimizing Risk

HAZARD - something that has the potential to cause harm to you or the environment.

RISK - depends on both the level of exposure and the degree of the hazard.

PROBABILITY – how likely you are to be exposed to the hazard

Hazard X Probability = *RISK*

REDUCE RISK by reducing the HAZARD or the PROBABILITY

